Abstract

The dynamic and steady-state behaviors of two open substrate cycles sharing a common interconversion enzyme are investigated in a homogeneous flow-through reactor. Lactate dehydrogenase (LDH) converts pyruvate and NADH into lactate and NAD, respectively. In turn, NAD (+ formate) is recycled into NADH (+ CO2) by formate dehydrogenase (FDH), and in the presence of the oxidized form of 2-(hydroxymethyl)-6-methoxy-1,4-benzoquinone (Q), lactate is reoxidized into pyruvate (+ Qred) by flavocytochrome b2 (FCytb2). When operating under thermodynamically open conditions by a continuous supply of pyruvate, quinone, NADH, and formate, this multienzyme system can exhibit multiple steady states under the form of dynamic hysteresis when using, among others, the pyruvate input concentration as the control parameter. This nonlinear behavior results from the strong inhibition of LDH exerted by its substrate pyruvate. The numerical predictions of a simple mathematical model, taking into account the coupling between the act...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.