Abstract

Modulation of extracellular potassium concentration ([K](o)) has a profound impact on the excitability of neurons and neuronal networks. In the CA3 region of the rat hippocampus synchronized epileptiform bursts occur in conditions of increased [K](o). The dynamic nature of spontaneous neuronal firing in high [K](o) is therefore of interest. One particular interest is the potential presence of bistable behaviors such as the coexistence of stable repetitive firing and fixed rest potential states generated in individual cells by the elevation of [K](o). The dynamics of repetitive activity generated by increased [K](o) is investigated in a 19-compartment hippocampal pyramidal cell (HPC) model and a related two-compartment reduced HPC model. Results are compared with those for the Hodgkin-Huxley equations in similar conditions. For neural models, [K](o) changes are simulated as a shift in the potassium reversal potential (E(K)). Using phase resetting and bifurcation analysis techniques, all three models are shown to have specific regions of E(K) that result in bistability. For activity in bistable parameter regions, stimulus parameters are identified that switch high-potassium model behavior from repetitive firing to a quiescent state. Bistability in the HPC models is limited to a very small parameter region. Consequently, our results suggest that it is likely some HPCs in networks exposed to high [K](o) continue to burst such that a stable, quiescent network state does not exist. In [K](o) ranges where HPCs are not bistable, the population may still exhibit bistable behaviors where synchronous population events are reversibly annihilated by phase resetting pulses, suggesting the existence of a nonsynchronous network attractor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.