Abstract

Based on a scheme proposed to experience the dynamical Casimir effect in optomechanical systems, we show how to squeeze mechanical motion and entangle the optical field with mechanical motion in an optomechanical system containing a parametric amplification. The scheme is based on optical bistability which emerges in the system for a strong enough driving field. By considering the steady state’s lower branch of the bistability, the system shows weak entanglement and almost no mechanical squeezing. When the steady state is on the upper branch of the bistable shape, both squeezing and entanglement are greatly enhanced. Specifically, the entanglement shows three degrees of magnitude enhancement. However, this giant entanglement is fragile against decoherence and thermal fluctuation. Regarding the mechanical squeezing, it reaches the standard quantum limit (SQL) in the upper branch of the bistability. Our proposal provides a way to improve quantum effects in optomechanical systems by taking advantage of nonlinearities. This scheme can be realized in similar systems such as superconducting microwave, and hybrid optomechanical systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.