Abstract
We study a stochastic version of the Wilson-Cowan model of neural dynamics, where the response function of neurons grows faster than linearly above the threshold. The model shows a region of parameters where two attractive fixed points of the dynamics exist simultaneously. One fixed point is characterized by lower activity and scale-free critical behavior, while the second fixed point corresponds to a higher (supercritical) persistent activity, with small fluctuations around a mean value. When the number of neurons is not too large, the system can switch between these two different states with a probability depending on the parameters of the network. Along with alternation of states, the model displays a bimodal distribution of the avalanches of activity, with a power-law behavior corresponding to the critical state, and a bump of very large avalanches due to the high-activity supercritical state. The bistability is due to the presence of a first-order (discontinuous) transition in the phase diagram, and the observed critical behavior is connected with the line where the low-activity state becomes unstable (spinodal line).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.