Abstract

The development of artificial molecular machines is a challenging endeavor. Herein, we have synthesized a series of bispidine diamides D1-D6 that exhibit rotation reminiscent of a motor motion. Dynamic NMR, X-ray diffraction, quantum mechanical calculations, and molecular dynamics simulations provided insights into their rotational dynamics. All the diamides D1-D6 exhibited mutually independent rotation around the two bispidine arms. However, the rate of rotation and the presence or absence of directionality in amide bond rotation were found to depend on the solvent, temperature, and nature of substitution on the amide carbonyl. These engineered systems may aid in the development of biologically relevant synthetic molecular motors. Studies on homochiral and heterochiral bispidine-peptides revealed that the direction of rotation can be controlled by chirality and the nature of the amino acid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.