Abstract

Scanning tunneling microscopy/spectroscopy (STM/STS) at 4.8 K has been used to examine the growth of a double-decker bis(phthalocyaninato)yttrium (YPc2) molecule on a reconstructed Au(111) substrate. Local differential conductance spectra (dI/dV) of a single YPc2 molecule allow the characteristics of the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) to be identified. Furthermore, lateral distributions of the local density of states (LDOS) have also been obtained by dI/dV mapping and confirmed by first principles simulations. These electronic feature mappings and theoretical calculations provide a basis for understanding the unique STM morphology of YPc2, which is usually imaged as an eight-lobed structure. In addition, we demonstrate that bias-dependent STM morphologies and simultaneous dI/dV maps can provide a way of understanding the stability of two-dimensional YPc2 films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.