Abstract

Pancreatic stellate cells (PSC) have been recognized as the principal cells responsible for the production of fibrosis in pancreatic ductal adenocarcinoma (PDAC). Recently, PSCs have been noted to share characteristics with cells of monocyte-macrophage lineage (MML cells). Thus, we tested whether PSCs could be targeted with the nitrogen-containing bisphosphonates (NBP; pamidronate or zoledronic acid), which are potent MML cell inhibitors. In addition, we tested NBPs treatment combination with nanoparticle albumin-bound paclitaxel (nab-paclitaxel) to enhance antitumor activity. In vitro, we observed that PSCs possess α-naphthyl butyrate esterase (ANBE) enzyme activity, a specific marker of MML cells. Moreover, NBPs inhibited PSCs proliferation, activation, release of macrophage chemoattractant protein-1 (MCP-1), and type I collagen expression. NBPs also induced PSCs apoptosis and cell-cycle arrest in the G1 phase. In vivo, NBPs inactivated PSCs; reduced fibrosis; inhibited tumor volume, tumor weight, peritoneal dissemination, angiogenesis, and cell proliferation; and increased apoptosis in an orthotopic murine model of PDAC. These in vivo antitumor effects were enhanced when NBPs were combined with nab-paclitaxel but not gemcitabine. Our study suggests that targeting PSCs and tumor cells with NBPs in combination with nab-paclitaxel may be a novel therapeutic approach to PDAC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.