Abstract

Bisphosphonates (BP) are powerful inhibitors of bone resorption. We have previously shown that 4-amino-1-hydroxybutylidene-1,1-bisphosphonate (AHBuBP), 3-amino-1-hydroxypropylidene-1,1-bisphosphonate (AHPrBP), and dichloromethylenebisphosphonate (Cl2MBP) inhibit the proliferation of macrophages in vitro at concentrations that do not affect the viability of nonproliferating cells. In this study we further investigated whether the antiproliferative effect of these three BP is, among the hematopoietic series, preferential to the mononuclear phagocyte lineage. BP were unable to inhibit more than 30-40% of the [3H]thymidine (3H-TdR) incorporation into bone marrow cells stimulated to proliferate by multilineage colony-stimulating activity containing conditioned medium (multi-CSA). From the analysis of the colonies induced in semisolid medium by multi-CSA and recombinant murine granulocyte-macrophage colony stimulating factor (rmGM-CSF), a dose-dependent disappearance specific to the macrophage-containing colonies emerged. In contrast, the number and composition of colonies other than macrophage and, in particular, the granulocyte colonies were not affected by these compounds, even at high concentrations (100 microM) previously also shown to be toxic for nonproliferating macrophages. Since the macrophages, differently from polymorphonuclear phagocytes, are known to be highly pinocytotic, it is possible that by this means they selectively concentrate BP intracellularly, leading to toxic concentrations. We postulate tht BP may also act in vivo in addition to their effect on osteoclast activity, by a similar mechanism on osteoclast precursors and on bone resident macrophages, a source of cytokines stimulating bone resorption and leading to impaired osteoclast recruitment and activity.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.