Abstract
IntroductionBisphenol A and several of the most commonly used phthalates have been associated with adverse metabolic health effects such as obesity and diabetes. Therefore, we analyzed these man-made chemicals in first morning urine samples from 107 healthy normal-weight Danish children and adolescents.MethodThis was a cross-sectional study. Participants were recruited as part of the Copenhagen Puberty Study. The subjects were evaluated by an oral glucose tolerance test (OGTT), a dual-energy X-ray absorptiometry (DXA) scan, direct oxygen uptake measurement during cycle ergometry and fasting blood samples. First morning urine was collected and phthalate metabolites and BPA were measured by liquid chromatography-tandem mass spectrometry (LC–MS/MS) with prior enzymatic deconjugation. Individual chemical concentrations were divided into tertiles and analyzed in relation to biological outcome.ResultsChildren in the lowest tertile of urinary BPA had significantly higher peak insulin levels during OGTT (P = 0.01), lower insulin sensitivity index (P < 0.01), higher leptin (P = 0.03), triglyceride (P < 0.01) and total cholesterol levels (P = 0.04), lower aerobic fitness (P = 0.02) and a tendency toward higher fat mass index (P = 0.1) compared with children in the highest tertile for uBPA. No significant differences in anthropometrics, body composition or glucose metabolism were associated with any of the phthalate metabolites measured.ConclusionThis pilot study on healthy normal-weight children suggests an inverse association between BPA and insulin resistance. Our findings contrast other cross-sectional studies showing a positive association for BPA, which may be due to confounding or reverse causation because diet is an important source of both BPA exposure and obesity.
Highlights
Bisphenol A and several of the most commonly used phthalates have been associated with adverse metabolic health effects such as obesity and diabetes
In this clinical study of healthy normal-weight children, urinary bisphenol A (BPA) and phthalate metabolites were present in detectable levels in the majority of urine samples, but no association was found between current exposure to these chemicals and adverse effect on body composition or glucose metabolism
We found that the group of children with the highest urinary excretion of BPA had significantly lower glucose-stimulated peak insulin levels, better insulin sensitivity and lower triglyceride levels compared with the lowest exposed children
Summary
Bisphenol A and several of the most commonly used phthalates have been associated with adverse metabolic health effects such as obesity and diabetes. We analyzed these man-made chemicals in first morning urine samples from 107 healthy normal-weight Danish children and adolescents. Concerns have been raised that man-made chemicals such as phthalates and bisphenol A (BPA) may have endocrine properties in humans. These potential endocrine disruptive chemicals (EDCs) are widely used in modern societies, and the majority of the human population is exposed to several of these environmental chemicals daily [1].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.