Abstract

Bisphenol A (BPA) and phthalates are common environmental contaminants that have been proposed to influence incidence and development of types 1 and 2 diabetes. Thus, effects of BPA and three phthalate metabolites (monoisobutyl phthalate (MiBP), mono-n-butyl phthalate (MnBP), and mono-(2-ethylhexyl) phthalate (MEHP)) were studied in the pancreatic β-cell line INS-1E, after 2–72 h of exposure to 5–500 μM. Three endpoints relevant to accelerated development of types 1 or 2 diabetes were investigated: β-cell viability, glucose-induced insulin secretion, and β-cell susceptibility to cytokine-induced cell death. BPA and the phthalate metabolites reduced cellular viability after 72 h of exposure, with BPA as the most potent chemical. Moreover, BPA, MEHP, and MnBP increased insulin secretion after 2 h of simultaneous exposure to chemicals and glucose, with potency BPA > MEHP > MnBP. Longer chemical exposures (24–72 h) showed no consistent effects on glucose-induced insulin secretion, and none of the environmental chemicals affected susceptibility to cytokine-induced cell death. Overall, BPA was more potent than the investigated phthalate metabolites in affecting insulin secretion and viability in the INS-1E pancreatic β-cells. In contrast to recent literature, concentrations with relevance to human exposures (1–500 nM) did not affect the investigated endpoints, suggesting that this experimental model displayed relatively low sensitivity to environmental chemical exposure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call