Abstract
Decidualization is a crucial precedent to embryo implantation, as its impairment is a major contributor to female infertility and pregnancy complications. Unraveling the molecular mechanisms involved in the impairment of decidualization has been a subject of interest in the field of reproductive medicine. Evidence from several experimental settings show that exposure to bisphenol A (BPA), an endocrine-disrupting chemical, affects the expression of several molecules that are involved in decidualization. Both low and high doses of BPA impair decidualization through the dysregulation of estrogen (ER) and progesterone (PR) receptors. Exposure to low doses of BPA leads to decreased levels and activities of several antioxidant enzymes, increased activity of endothelial nitric oxide synthase (eNOS), and increased production of nitric oxide (NO) via the upregulation of ER and PR. Consequently, oxidative stress is induced and decidualization becomes impaired. On the other hand, exposure to high doses of BPA downregulates ER and PR and impairs decidualization through two distinct pathways. One is through the upregulation of early growth response-1 (EGR1) via increased phosphorylation of extracellular signal-regulated protein kinases 1 and 2; and the other is through a reduced serum glucocorticoid-induced kinase-1 (SGK1)-mediated downregulation of epithelial sodium channel-α and the induction of oxidative stress. Thus, regardless of the dose, BPA can impair decidualization to trigger infertility and pregnancy complications. This warrants the need to adopt lifestyles that will decrease the tendency of getting exposed to BPA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.