Abstract

Bisphenol A (BPA) is a well-known plasticizer, which is widely distributed in the aquatic environment. Lots of studies showed that BPA could lead to lipid metabolism disorder in fish, but few studies studied the mechanism from the perspective of lipid transport. Apolipoprotein A1 (ApoA1) is the main component of high-density lipoprotein (HDL), and plays important roles in reverse cholesterol transport (RCT). In this study, we investigated the effect and molecular mechanism of BPA on ApoA1 and its effect on cholesterol in adult male rare minnow. Results showed that BPA could disturb hepatic ApoA1 expression through regulating Esrrg recruitment and DNA methylation in its promoter region, and ultimately up-regulated ApoA1 protein levels. The increased hepatic ApoA1 improved HDL-C levels, enhanced RCT, and disrupted cholesterol levels. The present study reveals the effect and mechanism of BPA on fish cholesterol metabolism from the perspective of cholesterol transport.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.