Abstract

This study examines the impact of Bisphenol A (BPA), a prevalent environmental estrogenic toxicant, on the ovarian development of mice. Mice were exposed to varying BPA doses from in utero to postnatal stages, up to weaning (day 21, PND 21) and puberty (day 45, PND 45). The BPA content in the serum of the offspring mice on PND 45 was higher than that of the mice sacrificed at PND 21. However, the ovary organ index of the mice of PND 21 was significantly increased, and the ovarian structure was damaged when exposed to BPA. In contrast, the mice with PND 45 did not show apparent ovarian lesions. On the other hand, granulosa cell apoptosis was detected in both PND 21 and PND 45 mice ovaries, and ERβ was increased under the influence of BPA. Transcriptomic analysis revealed BPA's significant impact on ribosomal gene expression, marked downregulation of Rpl21 and Rpsa, and upregulation of Rps2 in both age groups. These transcriptomic alterations were further corroborated by real-time PCR, highlighting a dose-dependent effect of BPA on Rps2. Our findings confirm BPA's detrimental effects on ovarian health, with more pronounced damage in younger mice, suggesting heightened vulnerability in this group. The study underscores ribosomes as critical targets in BPA-induced ovarian developmental disruptions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.