Abstract

ObjectiveThere is still much debate about the release of bisphenol-A (BPA) from dental materials. Therefore, this study aimed to quantify BPA present as an impurity in both BPA-based and non-BPA-based monomers and to evaluate whether these monomers may degrade to BPA upon salivary, bacterial, and chemical challenges. MethodsBPA was determined in three different amounts (1, 2, and 3 μmol) of each monomer (TEGDMA, UDMA, mUDMA, BisGMA, BisEMA-3, -6, -10, -30, BisPMA, EBPADMA urethane, BADGE, and BisDMA). Next, the monomers (3 μmol) were immersed in whole human pooled saliva collected from adults, Streptococcus mutans (2 × 107 CFU/mL), and acidic (0.1 M HCl), alkaline (0.1 M NaOH), and control media. The amount of BPA was quantified using a specific and highly sensitive UPLC–MS/MS method including derivatization of BPA by pyridine-3-sulfonyl chloride. ResultsThe monomers BisGMA and BisEMA-3 contained trace amounts (0.0006% and 0.0025%, respectively) of BPA as impurities of their synthesis process. BPA concentrations increased when the monomers BisGMA, BisEMA-3, BisEMA-6, BisEMA-10, BisPMA and BADGE were exposed to saliva and S. mutans, indicating degradation of a small amount of monomer into BPA. In addition, BisPMA and BADGE degraded into BPA under alkaline conditions. The conversion rate of the monomers into BPA ranged between 0.0003% and 0.0025%. SignificanceImpurities and degradation of BPA-based monomers may account for the release of BPA from resin-based dental materials. Even though the detected amounts of BPA due to monomer impurity were small, manufacturers of dental materials can reduce the BPA content by using only monomers of the highest purity. Considering the overall current trend towards BPA-free materials, it may be recommendable to investigate whether non-BPA based monomers can be used in dental resin-based materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call