Abstract

Bisphenol A (BPA), a monomer of polycarbonate plastics and epoxy resins, has previously been reported to induce micronuclei containing whole chromosomes in Chinese hamster V79 cells. In the present study, the aneuploidogenic potential of BPA was investigated in cultured human AG01522C fibroblasts. In contrast to the known aneugens diethylstilbestrol (DES) and 17β-estradiol, which caused mitotic arrest and the induction of kinetochore-positive micronuclei, BPA did not induce micronuclei and inhibited the proliferation of AG01522C cells in G2 phase and probably also in G1 phase. Fluorescence microscopy of the BPA-treated cells after immunofluorescent staining of microtubules revealed structural abnormalities of the cytoplasmic microtubule complex (CMTC): densely stained rings and loops of tubulin were observed, which increased in number with increasing BPA concentration and were more stable against low temperature than normal microtubules. The mechanisms of the growth inhibition and the interference with microtubules elicited by BPA in AG01522C cells are presently unknown. The formation of rings and loops in the CMTC of AG01522C cells was also observed with two congeners of BPA carrying one and two, respectively, additional methyl groups in ortho-position to the phenolic hydroxyl group at each aromatic ring. However, in contrast to BPA itself, these congeners of BPA behaved “DES-like” by inducing mitotic arrest and kinetochore-positive micronuclei in AG01522C cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call