Abstract

The purpose of this study was to determine if the cardiovascular response to hypoxia was altered by the presence of bisphenol A (BPA) in Danio rerio embryos. It was expected that BPA exposure would affect cardiovascular parameters during hypoxia more than normoxia due to an interaction between BPA and the hypoxia-inducible factor (HIF-1α) pathway. We demonstrate that BPA exposure has a minimal effect during normoxia but can severely affect the cardiovascular system during a hypoxic event. Cardiovascular response was measured in vivo using video microscopy and digital motion analysis. RBC density increased 35% in hypoxia alone but decreased 48% with addition of 0.25mg/L BPA. Tissue vascularization (% coverage) was unaffected by hypoxia alone but decreased 37% with addition of 0.25mg/L BPA. The diameter and RBC velocity of arteries were more sensitive than veins to BPA exposure during both normoxia and hypoxia. Arterial RBC velocity decreased 42% during normoxia and 52% during hypoxia with 1mg/L BPA. This decrease in velocity may in part be due to the 86% decrease in heart rate (ƒH) observed during co-exposure to hypoxia and 5mg/L BPA. While stroke volume (SV) was unaffected by treatment, cardiac output (Q) decreased by 69% with co-exposure. ƒH and Q were not affected by BPA exposure during normoxia. Development ultimately slowed by 146% and mortality rates were 95% during hypoxia when exposed to 5mg/L BPA. Our results show for the first time that BPA exposure alters the cardiovascular system during hypoxia more so than normoxia.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call