Abstract

The results of the experimental investigation of the nonlinear stage of laminar-turbulent transition in the hypersonic boundary layer on porous and impermeable cone surfaces are presented. The bispectral analysis is applied to show that the porous surface suppresses the subharmonic resonance due to second mode disturbances. It is established that on the porous surface nonlinear processes develop more slowly than on the impermeable surface. This behavior indicates that the subharmonic resonance plays the role of a catalyzer in transferring energy from the mean flow to low-frequency disturbances in transition process, in much the same way as it occurs in a subsonic boundary layer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.