Abstract

Brain-Computer Interface (BCI) systems are widely based on steady-state visual evoked potentials (SSVEP) detection using electroencephalography (EEG) signals. SSVEP-based BCIs are becoming attractive due to their higher signal-to-noise ratio (SNR) as well as faster information transfer rate (ITR). However, their performances are largely affected by the interference coming from the spontaneous EEG activities which intrinsically restrict their efficiency in distinguishing between SSVEPs and background EEG activities. In this paper, we introduce a new approach for the detection of SSVEP based on bispectral analysis to palliate the frequency-dependent bias. A COMB filter associated with a wavelet denoising filter is firstly used to minimize the noise while improving the SNR of phase signals. Next, the complementary orthogonal projections and the principle component analysis (PCA) are used to decompose the components related to SSVEPs and components related to brain activities. Finally, the bispectrum, a powerful tool for the analysis and the characterization of nonlinear properties of stochastic signals, is used to extract the features of the EEG signal benefiting from the information about the phase coupling of the signal components. The results of experiments, using two databases on five (or ten) subjects, show that the proposed approach significantly outperformed the standard CCA approach in distinguishing the target frequency and in average information transfer rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.