Abstract
BackgroundPD-1/PD-L1 blockade can confer durable benefits in the treatment of metastatic cancers, but the response rate remains modest and potential adverse effects occur sometimes. Concentrating immunotherapeutic agents at the site of disease was believed to break local immune tolerance and reduce systemic toxicity. E1A-engineered mesenchymal stromal cell (MSC.E1A) was an attractive transfer system that preferentially homing and treating cancer metastasis, through which the tumor cells were modified by locally replicated adenoviruses to release CD3-HAC, a bifunctional fusion protein that anti-CD3 scfv linked with high-affinity consensus (HAC) PD-1. Subsequently, CD3-HAC, wbich was bound on PD-L1-positive breast cancer cells, recruited T cells to exhibit a potent antitumor immunity incombination with immune checkpoint blockade.MethodsWe constructed the CD3-HAC gene driven by human telomerase reverse transcriptase (hTERT) promoter into an adenoviral vector and the E1A gene into the lentiviral vector. The homing property of MSCs in vivo was analyzed with firefly luciferase-labeled MSCs (MSC.Luc) by bioluminescent imaging (BLI). The cytotoxicity of T cells induced by CD3-HAC towards PD-L1-positive cells was detected in vitro and in vivo in combination with 5-FU.ResultsOur data suggest that CD3-HAC could specifically bind to PD-L1-positive tumor cells and induce lymphocyte-mediated lysis effectively both in vitro and in vivo. The intervention with HAC diminished the effects of PD-1/PD-L1 axis on T cells exposed to MDA-MB-231 cells and increased lymphocytes activation. MSCs infected by AdCD3-HAC followed by LentiR.E1A could specially migrate to metastasis of breast cancer and produce adenoviruses in the tumor sites. Furthermore, treatment with MSC.CD3-HAC.E1A in combination with 5-FU significantly inhibited the tumor growth in mice.ConclusionsThis adenovirus-loaded MSC.E1A system provides a promising strategy for the identification and elimination of metastasis with locally released immuno-modulator.
Highlights
programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) blockade can confer durable benefits in the treatment of metastatic cancers, but the response rate remains modest and potential adverse effects occur sometimes
Design and production of CD3-high-affinity consensus (HAC) To construct this bispecific fusion protein targeting CD3 on T cells and PD-L1 on tumor cells, single-chain variable fragment of anti-CD3 antibody was fused to a high-affinity PD-1 sequence (HAC) published by Maute et al [13], which was a variant of PD-1 ectodomain strongly binding to PD-L1 (Fig. 1a)
To obtain the purified fusion protein, eukaryotic expression vector pcDNA3.1(+) was used with corresponding CD3-HAC gene, which was expressed in adherent 293 T cells
Summary
PD-1/PD-L1 blockade can confer durable benefits in the treatment of metastatic cancers, but the response rate remains modest and potential adverse effects occur sometimes. E1A-engineered mesenchymal stromal cell (MSC.E1A) was an attractive transfer system that preferentially homing and treating cancer metastasis, through which the tumor cells were modified by locally replicated adenoviruses to release CD3-HAC, a bifunctional fusion protein that anti-CD3 scfv linked with high-affinity consensus (HAC) PD-1. Single agent of PD-1 or PD-L1-blocking therapy hardly converted the “cold” tumors to be “hot” [11, 12], due to poor T cell priming or even immunological ignorance in deep immunosuppress tumor phenotype. For solving this problem, we constructed a bispecific fusion protein named CD3-HAC, which was constituted by anti-CD3 scfv and high-affinity consensus (HAC) PD-1. We hypothesized that bifunctional fusion protein CD3-HAC served as an effective mean to neutralize PD-L1-mediated immune suppression and simultaneously enhance insufficient T cell priming, bypassing the recognition of the MHC and impaired antigen-specific responses [14, 15]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.