Abstract

A photoanode exhibiting high water-splitting efficiency at low bias potential is essential for stand-alone water-splitting devices through a tandem system combined with a photovoltaic device. However, many previous studies employing a typical BiVO4/WO3 heterojunctions focused on water oxidation at the maximum thermodynamic water splitting potential, 1.23 V vs. the reversible hydrogen electrode (VRHE). Here, we suggest a strategy for high water oxidation efficiency at low potential using 3D BiVO4/ZnO heterojunction photoanodes. The BiVO4/ZnO heterojunction exhibits a lower onset potential compared to the commonly used WO3 heterojunction. Due to the 3D ordered structure, the BiVO4/ZnO achieves enhanced light harvesting efficiency and improve charge separation efficiency at low bias potential by ZnO heterojunction. As a result, the BiVO4/ZnO photoanode exhibits a water-splitting photocurrent density of 3.3 ± 0.2 mA /cm2 is obtained at 0.6 VRHE under 1 sun illumination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.