Abstract

In the oral microenvironment, bacteria colonies are easily aggregated on the tooth-restoration surface, in the manner of a biofilm, which usually consists of heterogeneous structures containing clusters of a variety of bacteria embedded in an extracellular matrix, leading to serious recurrent caries. In this contribution, zero-dimensional (0D) bismuth (Bi) quantum dots (QDs) synthesized by a facile solvothermal method were directly employed to fabricate a Bi QD/polydimethylsiloxane (PDMS)-modified tooth by simple curing treatment. The result demonstrates that the as-fabricated Bi QD/PDMS-modified tooth at 37 °C for 120 min not only showed significantly improved hydrophobic performance with a water contact angle of 103° and 115° on the tooth root and tooth crown, respectively, compared to that (~20° on the tooth root, and ~5° on the tooth crown) of the pristine tooth, but also exhibited excellent antibacterial activity against S. mutans, superior biocompatibility, and biosafety. In addition, due to the highly photothermal effect of Bi QDs, the antibacterial activity of the as-fabricated Bi QD/PDMS-modified tooth could be further enhanced under illumination, even at a very low power density (12 mW cm-2). Due to the facile fabrication, excellent hydrophobicity, superior antibacterial activity, and biocompatibility and biosafety of the Bi QD/PDMS-modified tooth, it is envisioned that the Bi QD/PDMS-modified tooth with a fascinating self-cleaning and antibacterial performance can pave the way to new designs of versatile multifunctional nanocomposites to prevent secondary caries in the application of dental restoration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.