Abstract

Nanostructured bismuth oxybromide (BiOBr) are one among the most significantly researched visible light driven photocatalyst, but their low specific surface area hinders higher rate of photodegradation. Herein, a single-step solution based synthesis technique is adopted to embed BiOBr on very little quantities of activated charcoal (AC), thereby improving its specific surface area and visible light absorption range. Nanoplate morphology of BiOBr and their embedment on AC are confirmed from electron microscopy. Interestingly, the embedment of BiOBr on just 0.5 wt% of AC (BiOBr-AC0.5) significantly enhanced the rate of salicylic acid photodegradation, which was six-fold higher than that of pristine BiOBr.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.