Abstract
The occurrence of xenobiotic pollutants in the aquatic environment troubling the present and future generation. Persistent Organic Pollutants (POPs) is one such class of xenobiotic that was dominant in that category. In the present paper, a competent visible light driven heterojunction photocatalyst combining Bismuth niobate and g-C3N4 was developed for the effective removal of Bisphenol A (BPA), a notable POP. Before constructing the heterostructure the calcination temperature for bismuth niobate synthesis was optimised for achieving most proficient photocatalysis. A phase change in the crystal structure of bismuth niobate was apparent. The Bi3NbO7 at 300–500 °C transformed to Bi5Nb3O15 at 600–700 °C and to orthorhombic BiNbO4 at 900 °C as the temperature was enhanced. With the increment in the temperature the light absorbance of the materials enhanced in UV and reduced in visible light. Thus, the bismuth niobate obtained by calcining at 500 °C demonstrated highest BPA removal under sunlight was chosen for heterojunction construction. After the heterojunction construction with g-C3N4 the crystal lattice strain was observed to be reduced for all composites, and a greater mobility of charge carriers was observed within the composite. The presence of either of the materials resulted in a different band structure and thus Type II and Z-scheme pathway was inferred. A commendable photocatalytic activity was observed for B1.5G and BG1.5 under sunlight and LED light respectively. Hight amount of g-C3N4 in the BG1.5 resulted in maximum absorbance in LED light. Superoxide radicals (*O2−) radicals were observed as major radicals for B1.5G composite, whereas both *O2− and holes (h+) were the major radicals in case of BG1.5.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.