Abstract

AbstractPotassium‐ion batteries (KIBs) are important alternatives to lithium‐ and sodium‐ion batteries. Herein, microsized a Bi electrode delivers exceptional potassium storage capacity, stability, and rate capability by the formation of an elastic and adhesive oligomer‐containing solid electrolyte interface with the assistance of diglyme electrolytes. The kinetics‐controlled K–Bi phase transitions are unraveled combining electrochemical profiles, in situ X‐ray diffraction and density functional theory calculations. Reversible, stepwise Bi–KBi2–K3Bi2–K3Bi transitions govern the electrochemical processes after the initial continuous surface potassiation. The Bi electrode outperforms the other anode counterparts considering both capacity and potential. This work provides critical insights into the rational design of high‐performance anode materials for KIBs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.