Abstract
AbstractDevelopment of chemically doped high performance n‐type organic thermoelectric (TE) materials is of vital importance for flexible power generating applications. For the first time, bismuth (Bi) n‐type chemical doping of organic semiconductors is described, enabling high performance TE materials. The Bi interfacial doping of thiophene‐diketopyrrolopyrrole‐based quinoidal (TDPPQ) molecules endows the film with a balanced electrical conductivity of 3.3 S cm−1 and a Seebeck coefficient of 585 μV K−1. The newly developed TE material possesses a maximum power factor of 113 μW m−1 K−2, which is at the forefront for organic small molecule‐based n‐type TE materials. These studies reveal that fine‐tuning of the heavy metal doping of organic semiconductors opens up a new strategy for exploring high performance organic TE materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.