Abstract

Developing a unique catalytic system with enhanced activity is the topmost priority in the science of H2 energy to reduce costs in large-scale applications, such as automobiles and domestic sectors. Researchers are striving to design an effective catalytic system capable of significantly accelerating H2 production efficiency through green pathways, such as photochemical, electrochemical, and photoelectrochemical routes. Bi-based nanocatalysts are relatively cost-effective and environmentally benign materials which possess advanced optoelectronic properties. However, these nanocatalysts suffer back recombination reactions during photochemical and photoelectrochemical operations which impede their catalytic efficiency. However, heterojunction formation allows the separation of electron–hole pairs to avoid recombination via interfacial charge transfer. Thus, synergetic effects between the Bi-based heterostructured nanocatalysts largely improves the course of H2 generation. Here, we propose the systematic review of Bi-based heterostructured nanocatalysts, highlighting an in-depth discussion of various exceptional heterostructures, such as TiO2/BiWO6, BiWO6/Bi2S3, Bi2WO6/BiVO4, Bi2O3/Bi2WO6, ZnIn2S4/BiVO4, Bi2O3/Bi2MoO6, etc. The reviewed heterostructures exhibit excellent H2 evolution efficiency, ascribed to their higher stability, more exposed active sites, controlled morphology, and remarkable band-gap tunability. We adopted a slightly different approach for reviewing Bi-based heterostructures, compiling them according to their applicability in H2 energy and discussing challenges, prospects, and guidance to develop better and more efficient nanocatalytic systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call