Abstract

Materials based on transition metals, such as Cu, Co, and Ni, have been intensively used as electrocatalysts for non-enzymatic electrochemical glucose sensing. However, the current trend of wearable/in vivo continuous glucose sensing has raised the need for non/low-toxic candidates. Herein, we demonstrate that the overlooked low-toxic bismuth (Bi)-based nanomaterials are suitable choices. Using a laser-ablation method, surfactant-free Bi nanoparticles (NPs) and transition metal (Ni and Co)-doped Bi NPs are obtained, achieving amperometric sensitivity values of 127, 677, and 2326 µA mM−1 cm−2, respectively. Low detection limits of 1 and 4 µM, as well as an extensive linear range of 0.001–3.5 mM, are recorded using Ni- and Co-doped Bi NPs, respectively. With competitive performance and high selectivity towards glucose sensing in both standard and serum samples, Bi-based nanomaterials are proven effective and promising candidates for future glucose sensor design beyond transition metal elements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.