Abstract

AbstractBismuth cations (e.g., Bi3+, Bi2+) are very promising non‐rare‐earth activators in persistent luminescence (PersL) materials. Recently, much work has been devoted to modulating the host structures and defects to obtain high‐intensity luminescence and/or tunable excitation and emission bands of Bi‐activated persistent phosphors. A timely review on Bi‐based PersL phosphors would be highly attractive for future materials’ design and applications. The present review discusses the recent advances in Bi‐activated PersL phosphors with focus on the structure–defect–property relationships. Firstly, the basic ionic configurations of Bi cations as an activator are discussed in detail, followed by the classification as well as elaboration of Bi‐activated PersL phosphors according to emission wavelength. Then, the modulation strategies of PersL through adjusting the local structures are highlighted, which include defect engineering and theoretical prediction. These strategies allow for the effective regulation of PersL in Bi‐activated phosphors that have extensively been explored in information storage, X‐ray imaging, stress sensing, anti‐counterfeiting, etc. Finally, future challenges and perspectives toward Bi‐activated PersL phosphors are proposed. This review provides solid guidelines of designing diverse PersL materials with tunable properties for various optical applications in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.