Abstract

In this article, we develop a martingale approach to localized Bismut-type Hessian formulas for heat semigroups on Riemannian manifolds. Our approach extends the Hessian formulas established by Stroock (An estimate on the Hessian of the heat kernel: 355–371, 1996) and removes in particular the compact manifold restriction. To demonstrate the potential of these formulas, we give as application explicit quantitative local estimates for the Hessian of the heat semigroup, as well as for harmonic functions on regular domains in Riemannian manifolds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.