Abstract

AbstractInterpretability logic is a modal formalization of relative interpretability between first‐order arithmetical theories. Verbrugge semantics is a generalization of Veltman semantics, the basic semantics for interpretability logic. Bisimulation is the basic equivalence between models for modal logic. We study various notions of bisimulation between Verbrugge models and develop a new one, which we call w‐bisimulation. We show that the new notion, while keeping the basic property that bisimilarity implies modal equivalence, is weak enough to allow the converse to hold in the finitary case. To do this, we develop and use an appropriate notion of bisimulation games between Verbrugge models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.