Abstract
Macrocheles muscaedomesticae (Scopoli) is a predatory mesostigmatic mite that inhabits different manure microhabitats and preys mostly on housefly (Musca domestica L.) eggs. When a virgin female colonizes a new manure substrate, it produces male offspring through parthenogenesis (arrhenotoky); when her sons reach maturity, oedipal mating takes place and the female begins to produce bisexual offspring. In order to examine the consequence of oedipal reproduction on population development, we designed two separate experiments to compare life history traits and life table parameters of oedipal versus bisexual cohorts of M. muscaedomesticae, using the age-stage, two sex life table method. Experiments were conducted at 28 +/- 1 °C, using a photoperiod of 14:10 (L: D) h, and 65 +/- 5% relative humidity, with housefly eggs used to feed mites. Mean adult female longevity was 38.63 days, and fecundity 128.51 offspring under bisexual reproduction, and 37.48 days and 68.23 offspring under oedipal reproduction. In the bisexual cohort, the intrinsic rate of increase (rm), the finite rate of increase (λ), the net reproduction rate (R0), the gross reproductive rate (GRR) and the mean generation time (T) of M. muscaedomesticae were 0.2938 d-1, 1.3415 d-1, 54.216 offspring/individual, 77.7 offspring/individual and 13.5885 days, respectively. Because only male eggs were produced during the first 5.62 days (on average) of the oviposition period in the oedipal cohort, it was theoretically incorrect to compute the population parameters using the survival and fecundity values for this group, even though bisexual reproduction did occur after this period. Our findings determined that the effect of oedipal reproduction could be correctly defined and analyzed by using the age-stage, two-sex life table method. Our results demonstrated that virgin females are able to produce and copulate with their sons (oedipal mating), which then allows those females to produce both sexes. This reproductive system can enable this valuable natural enemy to considerably extend its distribution potential.
Highlights
House flies, Musca domestica L., face flies, Musca autumnalis De Geer, and stable flies, Stomoxys calcitrans L. are the primary dipterous pest species occurring in sheep, cattle, buffalo and poultry farms in Iran (Khoobdel and Davari, 2011)
The possibility of mass production of M. muscaedomesticae as a candidate biological control agent was evaluated by Filipponi (1964) who verified that Macrochelidae held promise as biological control agents of pest flies
Because most of the previous studies related to the life history of M. muscadomesticae were conducted at 28°C (e.g. Cicolani, 1979; Abo-Taka et al, 2014), this temperature was selected in order to maintain similarity in experimental conditions
Summary
Musca domestica L., face flies, Musca autumnalis De Geer, and stable flies, Stomoxys calcitrans L. are the primary dipterous pest species occurring in sheep, cattle, buffalo and poultry farms in Iran (Khoobdel and Davari, 2011). M. muscaedomesticae lives in the outermost layers of manure heaps, the region in which flies usually oviposit This predator feeds mainly on fly eggs (which it prefers) and on first instar larvae (Gerson et al, 2003). The possibility of mass production of M. muscaedomesticae as a candidate biological control agent was evaluated by Filipponi (1964) who verified that Macrochelidae held promise as biological control agents of pest flies He pointed out that mass production of macrochelids needed elucidation of optimum ecological conditions for each potential mite species, and that the selection of prolific strains that would increase production levels needed to be determined (Filipponi, 1964). The soil-dwelling predatory mite, Macrocheles robustulus (Berlese) has been commercially available since 2010 for control of thrips and soil inhabiting fly larvae such as Sciaridae (Koppert, 2010)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.