Abstract

For real functions that cross the unit interval, the method of bisection converges linearly if, but only if, the point of crossing is a diadic number where the function does not vanish, or, except for finitely many digits, its binary expansion coincides with that of one third or two thirds. Otherwise, the order of convergence remains undefined. If the point of crossing is one of Borel's normal real numbers (Lebesgue's measure of all of which equals one), then the sequence of ratios of two consecutive errors accumulates simultaneously at zero, one half, and negative infinity. Thus, in every finite sequence of estimates from the bisection, the last estimate need not be more accurate than the first one.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.