Abstract

BackgroundA challenge in gene therapy is the efficient delivery of DNA/siRNA to the diseased cells. The physicochemical characteristics of siRNA, such as high molecular weight, negative charges and hydrophilic nature—prevent passive diffusion across the plasma membrane for most cells. A therapeutically feasible carrier for intra-cellular delivery of gene materials should accomplish a series of tasks such as: condensing nucleic acid, protecting nucleic acid from leaking in vivo, facilitating endosome escape and releasing DNA/siRNA to the target site. To meet these requirements, an efficient gene vector based on polycation synthesis for siRNA delivery both in vitro and in vivo was developed.ResultsThe polymer was synthesized by 1, 4-butanediol bis (chloroformate) and PEI 800 Da to form PEI-Bu which could condense siRNA at the N/P ratio of 38.35 or above. The size of the nanoparticles was 100–300 nm and zeta potential was in the range of 10–30 mV at different N/P ratios. The nanoparticles can achieve the ability of cellular uptake and the silencing efficiency was about 46.63% in SMMC-7721 cell line which was generated to stably express GL3 luciferase gene. The cytotoxicity of the polyplex nanoparticles was almost negligible on SMMC-7721 cells by MTT assay, indicating that the reduced luciferase expression was the effect of RNAi, not the influence of cytotoxicity of polyplexes. The polyplex nanoparticle formulated by PEI-Bu and siRNA at N/P ratio of 115.05 was injected into the SMMC-7721 tumor bearing mice locally and the expression of luciferase can reduce to 63.17% compared with control group.ConclusionsResults in this study suggested that PEI-Bu polycation might provide a promising solution for siRNA delivery and had the potential in anti-tumor gene therapy.

Highlights

  • A challenge in gene therapy is the efficient delivery of DNA/Small interfering RNA (siRNA) to the diseased cells

  • From the evidences of electrophoresisis, Transmission electron microscopy (TEM) image, size and zeta potential measurement, all the results indicated the capability of PEI-Bu to pack siRNA into nano-sized polyplexes

  • PEI 25 K was used as a positive transfection agent in vivo, but cytotoxicity has largely prohibited its clinical use in vivo

Read more

Summary

Introduction

A challenge in gene therapy is the efficient delivery of DNA/siRNA to the diseased cells. The physicochemical characteristics of siRNA, such as high molecular weight, negative charges and hydrophilic nature— prevent passive diffusion across the plasma membrane for most cells. A therapeutically feasible carrier for intra-cellular delivery of gene materials should accomplish a series of tasks such as: condensing nucleic acid, protecting nucleic acid from leaking in vivo, facilitating endosome escape and releasing DNA/siRNA to the target site. To meet these requirements, an efficient gene vector based on polycation synthesis for siRNA delivery both in vitro and in vivo was developed. Nonviral vectors possess a series of advantages to condense siRNA and promote the efficiency of transfection [7,8,9]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.