Abstract

Conditions to prepare trans-[Ru2(dmba)4(C[triple chemical bond]CAr)2] from [Ru2(dmba)4(NO(3))2] (DMBA=N,N'-dimethylbenzamidinate) and HC[triple chemical bond]CAr were optimized; Et2NH was found to be the most effective among a number of weak bases in facilitating the product formation. Furthermore, a series of unsymmetric trans-[(ArC[triple chemical bond]C)Ru(2)(dmba)4(C[triple chemical bond]CAr')] compounds were prepared under optimized conditions, in which one or both of Ar and Ar' are donor (NMe2)-/acceptor (NO(2))-substituted phenyls. While the X-ray crystallographic studies revealed a minimal structural effect upon donor/acceptor substitution, voltammetric measurements indicated a significant influence of substituents on the energy level of frontier orbitals. In particular, placing a donor and an acceptor on the opposite ends of trans-[(ArC[triple chemical bond]C)Ru2(dmba)4(C[triple chemical bond]CAr')] moiety results in an energetic alignment of frontier orbitals that favors a directional electron flow, a necessary condition for unimolecular rectification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.