Abstract

AbstractA method of enzyme immobilization by graft‐copolymerization onto polysaccharides is reported. Bisacryloylpiperazine has been used as a vinylating reagent and the reaction product with several enzymes (HRP, GOD, Am, ChT, Cel) was copolymerized onto different matrices (cellulose, Sepharose, Sephadex, starch). Immobilization parameters which influence the copolymer activity have been studied for the insolubilization of horseradish peroxidase onto cellulose. These parameters are pH, time, and temperature of bisacryloylpiperazine enzyme activation reaction.Under the best immobilization conditions copolymer activity linearly depends on enzyme concentration. Enzyme coupling efficiency depends on the type of enzyme and it ranges from 7 to 20%.The most important characteristics of these immobilized enzyme systems were tested and compared with those of similar systems obtained by glycidylmethacrylate enzyme activation (stability in continuous washing, kinetic characteristics, and storage, thermal, and operational stability). Immobilized enzyme graft copolymers have kinetic behaviour very close to that of the free enzymes. Diffusion is not seriously limited because immobilization reaction does not alter the enzymatic activity. By means of bisacryloylpiperazine it was possible to immobilize chymotrypsin with better results than those previously obtained, particularly coupling efficiency and long term continuous working.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.