Abstract
Ruthenium(II) complexes developed for photodynamic therapy (PDT) are almost exclusively tris-bidentate systems with C2 or D3 symmetry. This is due to the fact that this structural framework commonly produces long-lived excited states, which, in turn, allow for the generation of large amounts of singlet oxygen (1O2) and other reactive oxygen species. Complexes containing tridentate ligands would be advantageous for biological applications as they are generally achiral (D2d or C2v symmetry), which eliminates the possibility of multiple isomers which could exhibit potentially different interactions with chiral biological entities. However, Ru(II) complexes containing tridentate ligands are rarely studied as candidates for photobiological applications, such as PDT, since they almost exclusively exhibit low quantum yields and very short excited-state lifetimes and, thus, are not capable of generating sufficient 1O2 or engaging in electron transfer reactions. Here, we report a proof-of-concept approach to make bis-tridentate Ru(II) complexes useful for PDT applications by altering their photophysical properties through the inclusion of N-heterocyclic carbene (NHC) ligands. Three NHC and two terpyridine ligands were studied to evaluate the effects of structural and photophysical modulations of bis-substituted Ru(II) complexes. The NHC complexes were found to have superior excited-state lifetimes, 1O2 production, and photocytotoxicity. To the best of our knowledge, these complexes are the most potent light-activated bis-tridentate complexes reported.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.