Abstract

The inherent properties of non-aqueous electrolytes are highly associated with the identity of salt anions. To build highly conductive and chemically/electrochemically robust electrolytes for lithium-ion batteries (LIBs) and rechargeable lithium metal batteries (RLMBs), various kinds of weakly coordinating anions have been proposed as counterparts of lithium salts and ionic liquids. Among them, bis(fluorosulfonyl)imide anion ([N(SO2F)2]−, FSI−) has aroused special attention in battery field due to the unique physical, chemical, and electrochemical properties of the FSI-based electrolytes. Herein, an overview on the synthetic methodologies of the FSI-based salts (e.g., alkali metal salts, ionic liquids) is provided, and their applications in LIBs and RLMBs are also updated. Future directions on developing FSI-based and/or FSI-derived electrolytes are presented. The present work is anticipated to inspire the design and screening of new anions for battery use, particularly, those stemming from sulfonimide anions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call