Abstract
Four new organic ammonium tetrasulfidometallates: (4-aminopyridinium)2[MoS4]·H2O 1, (4-aminopyridinium)2[WS4]·H2O 2, (2-amino-6-methylpyridinium)2[MoS4] 3, and (2-amino-6-methylpyridinium)2[WS4] 4 have been synthesized by a well-known base promoted cation exchange method. All compounds were characterized by elemental analysis, IR/Raman/UV–Vis spectroscopy, thermogravimetric analysis, and X-ray crystallography. The structures of 1 and 2 consist of unique tetrahedral [MoS4]2− and [WS4]2− dianions, which are charge-balanced by crystallographically independent 4-aminopyridinium monocations. Additionally, both have a lattice water molecule, which contributes to the overall stability of their structures. In compounds 3 and 4, 4-aminopyridinium of 1 and 2 are replaced by 2-amino-6-methylpyridinium cation and lack lattice water. The different H-bonding interactions viz NH⋯S, CH⋯S, NH⋯O and OH⋯O are observed in 1 and 2, which are reduced to two viz. NH⋯S and CH⋯S in 3 and 4. The weak interactions (NH⋯O and OH⋯O) originating from lattice water further interlink cations with [MoS4]2− and [WS4]2− anions forming extended networks in 1 and 2. To understand the importance of intermolecular interactions in the structures of 1–4, the Hirshfeld surface analyses were performed. The enrichment ratio (E) obtained in the structures of compounds 1–4 was obtained. Compounds 1–4 were tested for their sulfur transfer ability. Only compound 1 showed a predominant disulfide product formation in reaction with 1,3-dibromopropane.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.