Abstract
Abstract A new series of homobivalent Dimebon analogs, bis-γ-carbolines with alkylene, phenylenedialkylene, and triazole-containing spacers, was synthesized. Doubling the γ-carboline pharmacophore increased inhibitory potency against acetylcholinesterase (AChE) compared with Dimebon, while keeping Dimebon’s anti-butyrylcholinesterase activity; therefore, leading to inversion of selectivity. Molecular docking revealed the reasons for the increased anti-AChE activity and ability to block AChE-induced aggregation of β-amyloid for bis-γ-carbolines, which became double-site inhibitors of AChE. Conjugates with ditriazole-containing spacers were the most active antioxidants in both the ABTS-test and prevention of lipid peroxidation in brain homogenates without inhibiting the mitochondrial permeability transition (MPT). Conjugates with alkylene (4a–d), phenylenedialkylene (4e), and monotriazole (8) spacers were less active as antioxidants but prevented induction of the MPT and increased the calcium retention capacity of mitochondria. Lead compound 4e showed neuroprotective potential in a cellular calcium overload model of neurodegeneration. Computational studies showed that all the bis-γ-carbolines were expected to have high values for intestinal absorption and very good blood-brain barrier permeability along with good drug-likeness. Overall, the results showed that new homobivalent Dimebon analogs exhibit an expanded spectrum of biological activity and improved pharmacological properties, making them promising candidates for further research and optimization as multitarget agents for Alzheimer’s disease treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.