Abstract

In the proximal convoluted tubule (PCT) of rat kidney, reabsorption is known to take place during fetal life, but no data on Na-K-ATPase and mitochondrial energy metabolism enzymes in this epithelium were available at fetal and neonatal stages. With use of the quantitative histochemistry approach, Na-K-ATPase, citrate synthase (tricarboxylic acid cycle), 3-ketoacid CoA-transferase and thiolase (ketone body oxidation), beta-hydroxyacyl-CoA dehydrogenase (fatty acid oxidation), and acetylcarnitine transferase (acetyl-CoA transport through mitochondrial membrane) were microassayed in PCT and metanephric mesenchyme of fetal and newborn rat kidney. The data indicate that, during fetal life, PCT differentiation involves concomitant increases in Na-K-ATPase and oxidative enzyme activities, supporting the hypothesis that mitochondria could play an active role in cellular ATP turnover when reabsorptive functions develop. Birth resulted in marked increases in the activities of Na-K-ATPase and of fatty acid and ketone body oxidation enzymes in the PCT, whereas no changes in enzyme activities occurred in the metanephric mesenchyme between the fetal and the newborn stage.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.