Abstract
The Walker Lane belt of eastern California and western Nevada is the northernmost extension of the Gulf of California transtensional rift, where the process of continental rupture has not yet been completed, and rift initiation can be studied on land. GPS and earthquake focal mechanism studies demonstrate that the Walker Lane belt currently accommodates NW-SE–directed movement between the Sierra Nevada microplate and the North American plate, but the timing and nature of rift initiation remains unclear. I present a model for plate-margin-scale initiation of the Gulf of California and Walker Lane transtensional rifts at ca. 12 Ma; localization of rifting in both was initiated by thermal weakening in the axis of a subduction-related arc undergoing extension due to slab rollback, and thermal weakening in the arc was enhanced by stalling of the trenchward-migrating precursor arc against a thick Cretaceous batholithic lithospheric profile on its western margin. Rifting succeeded very quickly in the Gulf of California, due to stalling of Farallon slabs, but the Walker Lane transtensional rift has been unzipping northward along the axis of the Cascades arc, following the Mendocino triple junction. I infer that plate-margin-scale Walker Lane transtension was signaled by the development of an unusually large and voluminous transtensional arc volcanic center, the ca. 11.5–9 Ma Sierra Crest–Little Walker arc volcanic center. I show that the style of faulting in this large Miocene arc volcanic center closely matches that of Quaternary transtensional structures in the central Walker Lane, where it lies, and that it differs from southern and northern Walker Lane structures. This indicates that the temporal transition from E-W Basin and Range extension to NW-SE Walker Lane transtension occurred earlier than most workers have inferred. I also summarize new data which show that the central Sierra Nevada range front (from Long Valley to the Tahoe Basin) lies squarely within the Walker Lane belt, not to the west of it as previous workers have inferred.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.