Abstract

Genomes of the four plant viruses of the genus Nanovirus consist of multiple circular single-stranded DNA components, each of which encodes a single protein. Protein phylogenies supported the hypothesis that faba bean necrotic yellows virus (FBNYV) and milk vetch disease virus (MDV) are sister taxa; that subterranean clover stunt virus (SCSV) branched next; and that banana bunchy top virus (BBTV) is an outgroup to the three other species. The phylogeny of replication (Rep) proteins indicate that this small viral multi-gene family has evolved by a process of duplication and subsequent loss of Rep-encoding genome components, analogous to the “birth-and-death” process of evolution which has been described in eukaryotic multi-gene families. By contrast, repeated recombinational events between components were found to have homogenized the non-coding portions of several components encoding unrelated components. For example, as result of recent recombination a portion of the non-coding region is virtually identical among SCSV components 1, 3, 4, 5, and 7. Thus, there is a process of concerted evolution of non-coding regions of Nanovirus genome components, which raises the possibility that certain non-coding regions are subject to functional constraint.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call