Abstract

Every birth and death chain on a finite tree can be represented as a random walk on the underlying tree endowed with appropriate conductances. We provide an algorithm that finds these conductances in linear time. Then, using the electric network approach, we find the values for the stationary distribution and for the expected hitting times between any two vertices in the tree. We show that our algorithms improve classical procedures: they do not exhibit ill-posedness and the orders of their complexities are smaller than those of traditional algorithms found in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.