Abstract

p-Arsanilic acid (p-ASA), is a widely used animal feed additive in many developing countries, and is often introduced to agricultural soils with animal wastes. A common soil metal oxide, birnessite (δ-MnO2), was found to mediate its degradation with fast rates under acidic conditions. Experimental results indicate that adsorption and degradation of p-ASA on the surface of δ-MnO2 were highly pH dependent, and the overall kinetics for p-ASA degradation and formation of precursor complex could be described by a retarded first-order rate model. For the reaction occurring between pH 4.0 and 6.2, the initial rate equation was determined to be rinit=2.36×10(-5)[ASA]0.8[MnO2]0.9[H+]0.7. p-ASA first forms a surface precursor complex on δ-MnO2 during degradation, followed by formation of p-ASA radicals through single-electron transfer to δ-MnO2. The p-ASA radicals subsequently undergo cleavage of arsenite group (which is further oxidized to arsenate) or radical-radical self-coupling. Instead of full mineralization (with respect to arsenic only), about one-fifth of the p-ASA "couples" to form an arsenic-bearing azo compound that binds strongly on δ-MnO2. The fast transformation of p-ASA to arsenite and arsenate mediated by δ-MnO2 significantly increases the risk of soil arsenic pollution and deserves significant attention in the animal farming zones still using this feed additive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.