Abstract

We study the long time behavior of small solutions of semi-linear dispersive Hamiltonian partial differential equations on confined domains. Provided that the system enjoys a new non-resonance condition and a strong enough energy estimate, we prove that its low super-actions are almost preserved for very long times. Roughly speaking, it means that, to exchange energy, modes have to oscillate at the same frequency. Contrary to the previous existing results, we do not require the solutions to be especially smooth. They only have to live in the energy space. We apply our result to nonlinear Klein-Gordon equations in dimension d = 1 and nonlinear Schrodinger equations in dimension d ≤ 2.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call