Abstract

We consider the problem of extending to PDEs Birkhoff normal form theorem on Hamiltonian systems close to nonresonant elliptic equilibria. As a model problem we take the nonlinear wave equation with Dirichlet boundary conditions on [0,π]; g is an analytic skewsymmetric function which vanishes for u=0 and is periodic with period 2π in the x variable. We prove, under a nonresonance condition which is fulfilled for most g's, that for any integer M there exists a canonical transformation that puts the Hamiltonian in Birkhoff normal form up to a reminder of order M. The canonical transformation is well defined in a neighbourhood of the origin of a Sobolev type phase space of sufficiently high order. Some dynamical consequences are obtained. The technique of proof is applicable to quite general semilinear equations in one space dimension.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call