Abstract

Birefringent π-phase-shifted Bragg gratings for multi-parameter sensing at temperatures ∼1000 °C are written inside a standard single mode silica optical fiber (SMF-28) with infrared femtosecond pulses and a special phase mask one half of which is shifted with respect to the other by 5/4 of the mask period. The birefringence is caused by the presence of light-induced sub-wavelength periodic planar nanostructures in the fiber core, whose orientation is controlled by the laser polarization, and is maximized when the laser pulse polarization is aligned perpendicular to the fiber core. The birefringence can reach ∼4.2 × 10−4 at room temperature at the 1.5 × 10−4 level after 100 h annealing at 1000 °C. Erasure and rewriting of the planar nanostructures inside fiber Bragg gratings by changing the laser pulse polarization is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.