Abstract

Development of low-cost and light polymer optical devices to substitute for inorganic materials is a major trend. Traditional molten processing methods are direct and have been extensively applied in optical product manufacturing. However, the inevitable intrinsic birefringence and optical distortion due to polymer molecular chain anisotropy limit their application in high-end optical devices. Here, we report a novel thermocompression strategy for isotropic polymer lens fabrication, in which a cross-linked photonic crystal (PC) consisting of closely stacked polymer microspheres is used as a precursor and then heated and pressed under the rubbery state. A polymethyl methacrylate microsphere-based PC is used as a demonstration, and the obtained isotropic lenses exhibit superior performance compared to the traditional counterpart, which are birefringence-free (Δn < 1 × 10-5) and optical distortion-free and have excellent mechanical properties (hardness reaches 0.28 GPa), and the hidden mechanism is carefully studied. These properties enable the isotropic lens to be applied in precision optical components such as the lens of spectacles, microscope, telescope and endoscope, industrial camera, and astronaut helmet, and the proposed general method can extend to various polymers and provide new opportunities for the development of three-dimensional PCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.