Abstract

With the intensification of ecosystem damage, birds have become the symbolic species of the ecosystem. Ornithology with interdisciplinary technical research plays a great significance for protecting birds and evaluating ecosystem quality. Deep learning shows great progress for birdsongs recognition. However, as the number of network layers increases in traditional CNN, semantic information gradually becomes richer and detailed information disappears. Secondly, the global information carried by the entire input may be lost in convolution, pooling, or other operations, and these problems will weaken the performance of classification. In order to solve such problems, based on the feature spectrogram from the wavelet transform for the birdsongs, this paper explored the multi-scale convolution neural network (MSCNN) and proposed an ensemble multi-scale convolution neural network (EMSCNN) classification framework. The experiments compared the MSCNN and EMSCNN models with other CNN models including LeNet, VGG16, ResNet101, MobileNetV2, EfficientNetB7, Darknet53 and SPP-net. The results showed that the MSCNN model achieved an accuracy of 89.61%, and EMSCNN achieved an accuracy of 91.49%. In the experiments on the recognition of 30 species of birds, our models effectively improved the classification effect with high stability and efficiency, indicating that the models have better generalization ability and are suitable for birdsongs species recognition. It provides methodological and technical scheme reference for bird classification research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call