Abstract

Protein-drug interactions play important roles in many biological processes and therapeutics. Predicting the binding sites of a protein helps to discover such interactions. New drugs can be designed to optimize these interactions, improving protein function. The tertiary structure of a protein decides the binding sites available to the drug molecule, but the determination of the 3D structure is slow and expensive. Conversely, the determination of the amino acid sequence is swift and economical. Although quick and accurate prediction of the binding site using just the sequence is challenging, the application of Deep Learning, which has been hugely successful in several biochemical tasks, makes it feasible. BiRDS is a Residual Neural Network that predicts the protein's most active binding site using sequence information. SC-PDB, an annotated database of druggable binding sites, is used for training the network. Multiple Sequence Alignments of the proteins in the database are generated using DeepMSA, and features such as Position-Specific Scoring Matrix, Secondary Structure, and Relative Solvent Accessibility are extracted. During training, a weighted binary cross-entropy loss function is used to counter the substantial imbalance in the two classes of binding and nonbinding residues. A novel test set SC6K is introduced to compare binding-site prediction methods. BiRDS achieves an AUROC score of 0.87, and the center of 25% of its predicted binding sites lie within 4 Å of the center of the actual binding site.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.